This European Standard specifies a test method for determining the air permeability of shutters that claim to conform to class 5 of CEN/TC 33 - Doors, windows, shutters, building hardware and curtain walling.

Scope

This European Standard defines the classification of test results for completely assembled windows and external and internal pedestrian doorsets of any material after testing in accordance with EN 1026.

This European Standard defines the method to be used to determine the air permeability of completely assembled windows and doorsets of any material, when submitted to positive or negative test pressures. This test method is designed to take account of conditions in use, when the window or doorset is installed in accordance with the manufacturer's specification and the requirements of relevant European Standards and codes of practice. This European Standard does not apply to the joints between the window or doorset frame and the building construction.

This European Standard specifies the classification criteria of shutters and internal and external blinds in relation with their air permeability for the calculation of additional thermal resistance given by these products according to EN ISO 10077-1. This standard applies to shutters and blinds fitted to a window, a French window or a curtain walling in such a way that in extended and closed position they inclose an air layer of thickness roughly constant between 15 mm and 300 mm (shutters and blinds parallel to the window or to the façade). This standard applies to the following shutters and blinds:

- Shutters: roller shutter, external venetian blind, wing shutter, sliding panel shutter, venetian shutter, concertina shutter, flat-closing concertina shutter;
- External blinds: vertical awning, facade awning, conservatory awning;
- Internal blinds: venetian blind, roller blind, vertical blind, pleated blind;
- Blinds incorporated into glazing.

This European Standard specifies the classification for air permeability for doors in a closed position, when tested in accordance with EN 12426. The doors are intended for installation in areas in the reach of people, for which the main in-tended uses are giving safe access for goods, vehicles and persons in industrial, commercial or residential premises. The doors may be manually or power operated. This document applies to all doors provided in accordance with prEN 13241:1998. 1.2 Exclusions It does not apply to:

- lock gates and dock gates;
- doors on lifts;
- doors on vehicles;
- armoured doors;
- doors mainly for the retention of animals;
- theatre textile curtains;
- horizontally moving doors less than 2,5 m wide and 6,25 m² area, designed principally for pedestrian use;
- revolving doors of any size;
- doors outside the reach of people (such as crane gantry fences);
- railway barriers;
- barriers used solely for vehicles.

This European Standard specifies the test method for determining the air permeability of shutters that claim to conform to class 5 of thermal resistance "airtight shutters" according to standards prEN ISO 10077-1:1999 and prEN 13125:1998, when allocation cannot be given by geometrical criteria.

This standard defines the method to be used to determine the air permeability of curtain walling, both its fixed and operable parts. It describes how the specimen shall be tested under positive and negative air pressure. NOTE: This standard applies to any curtain walling product as defined in WI 0003238.
<p>| Reference | CEN/TC 156 - Ventilation for buildings | Ventilation for buildings - Air handling units - Rating and performance for units, components and sections | EN 13053:2019 | This document specifies requirements and testing for rating and performance of Non Residential Ventilation Units, NRUV's, specifically Air Handling Units (AHU's). It specifies requirements, classifications and testing of components and sections of air handling units. This document applies to tests in a laboratory and in situ. This document is applicable both for mass produced air handling units and tailor-made Air Handling Units. This document applies to AHU and individual sections of AHU with the designed air flow > 250 m³/h. 1. This document applies to UVU’s with additional air treatment components in addition to filtration. This standard does not include: - residential unidirectional and bidirectional ventilation units; - noreidential unidirectional ventilation units which consist of only a casing, a fan with or without filter. NOTE 1 Residential ventilation units are covered by EN 13142. NOTE 2 Nonresidential unidirectional ventilation units which consists only casing, fan with or without filter are covered by EN 17291. |
|——|——|——|——|——|
| Reference | CEN/TC 156 - Ventilation for buildings | Ventilation for buildings - Performance measurement and checks for residential ventilation systems | EN 14134:2019 | This document specifies checks and measurement methods in order to verify the fitness for purpose of installed ventilation systems in dwellings. It can be applied to commissioning of new systems and performance testing of existing systems. It provides choice between simple test methods, when sufficient, and extensive measurements, when necessary. Considering that this document has been developed for large scale application and considering the practical conditions of field measurements, no correction regarding ambient conditions (temperature and barometric pressure) is applied to functional measurements. This document deals with items d), e), f), g) of the following list giving the different stages of the design, installation, checking and measuring of a ventilation system: a) design and dimensioning of residential system; b) installation of system; c) balancing and adjustment of system; d) pre-checks on system; e) functional checks on system; f) functional measurements on system; g) special measurements on system if required. This document applies to ventilation systems (mechanical, hybrid, natural) comprising any of the following elements: - air terminal devices (supply, extract, intake and exhaust); - air transfer devices (externally mounted, internally mounted); - controls; - ducts; - fans; - filters; - heat recovery; - heating/cooling of supply air; - recirculation air; - cooker hood; - cows; - dampers; - sound reduction devices. In case of multi-functional units, the checking and measuring only apply to the ventilation part. Therefore, this document does not apply to: - heating systems and their control; - refrigerating systems and their control; - electrical power supply systems. It does not cover the following points: - airtightness of the building envelope; the whole dwelling and the individual room ventilation rates can be influenced by air infiltration through the building envelope (see EN ISO 9972); - effect of the ventilation system on indoor air speed within the occupied zone (see for example EN 15726). |
| Reference | CEN/TC 156 - Ventilation for buildings | Energy performance of buildings - Part 1: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics | EN 16798-1:2019 | This document specifies requirements for indoor environmental parameters for thermal environment, indoor air quality, lighting and acoustics and specifies how to establish these parameters for building system design and energy performance calculations. This European Standard includes design criteria for the local thermal comfort factors, draught, radiant temperature asymmetry, vertical air temperature differences and floor surface temperature. This European Standard is applicable where the criteria for indoor environment are set by human occupancy and where the production or process does not have a major impact on indoor environment. This European Standard also specifies occupancy schedules to be used in standard energy calculations and how different categories of criteria for the indoor environment can be used. The criteria in this European Standard can also be used in national calculation methods. This standard sets criteria for the indoor environment based on existing standards and reports listed under normative references or in the bibliography. This European Standard does not specify design methods, but gives input parameters to the design of building envelope, heating, cooling, ventilation and lighting. Table 1 shows the relative position of this standard within the set of EPB standards in the context of the modular structure as set out in EN ISO 52000.1. NOTE 1 In CEN ISO/TR 52000 2 the same table can be found, with, for each module, the numbers of the relevant EPB standards and accompanying technical reports that are published or in preparation. NOTE 2 The modules represent EPB standards, although one EPB standard may cover more than one module and one module may be covered by more than one EPB standard, for instance a simplified and a detailed method respectively. See also Clause 2 and Tables A.1 and B.1. |
| Reference | CEN/TC 156 - Ventilation for buildings | Ventilation for buildings - Correction of air flow rate according to ambient conditions | CEN/TS 17153:2018 | This document gives guidelines to correct the measured air flow rate when measuring conditions are different from standard conditions. It applies to a power-law formula giving the air flow rate as a function of a pressure difference with an air flow rate coefficient, C, varying with temperature and pressure. This document applies to: - passive elements of air distribution systems with a cross-section area that does not depend on pressure; - volume flow rate (and not mass flow rate). This document is applicable to (but not limited to): - EN ISO 1597, Ventilation for buildings - Sheet metal air ducts with rectangular section - Requirements for strength and leakage; - EN 1751, Ventilation for buildings - Air terminal devices - Aerodynamic testing of damper and valves; - EN 12237, Ventilation for buildings - Ductwork - Strength and leakage of circular sheet metal ducts; - EN 13141 1, Ventilation for buildings - Performance testing of components/products for residential ventilation - Part 1: Externally and internally mounted air transfer devices; - EN 13141 2, Ventilation for buildings - Performance testing of components/products for residential ventilation - Part 2: Exhaust and supply air terminal devices; - EN 13141 9, Ventilation for buildings - Performance testing of components/products for residential ventilation - Part 9: externally mounted humidity controlled air transfer device; - EN 13141 10, Ventilation for buildings - Performance testing of components/products for residential ventilation - Part 10: humidity controlled extract air terminal device; - EN 15727, Ventilation for buildings - Ducts and ductwork components, leakage classification and testing. This document does not apply to: - fans; - air terminal devices with automatically controlled openings (variable openings). |</p>
<table>
<thead>
<tr>
<th>EN 17192:2018</th>
<th>CEN/TC 156 - Ventilation for buildings</th>
<th>Ventilation for buildings - Ductwork - Non-metallic ductwork - Requirements and test methods</th>
<th>91.140.30 - Ventilation and air-conditioning systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 16798-7:2017</td>
<td>CEN/TC 156 - Ventilation for buildings</td>
<td>Energy performance of buildings - Ventilation for buildings - Part 7: Calculation methods for the determination of air flow rates in buildings including infiltration (Modules M5-5)</td>
<td>91.140.30 - Ventilation and air-conditioning</td>
</tr>
<tr>
<td>EN 16798-17:2017</td>
<td>CEN/TC 156 - Ventilation for buildings</td>
<td>Energy performance of buildings - Ventilation for buildings - Part 17: Guidelines for inspection of ventilation and air conditioning systems (Module M4-11, M5-11, M6-11, M7-11)</td>
<td>91.120.10 - Thermal insulation of buildings 91.140.30 - Ventilation and air-conditioning</td>
</tr>
</tbody>
</table>

This document defines the test methods and performance characteristics for rigid or semi-rigid non-metallic ductwork which are used for ventilation and air conditioning of buildings. This document does not include flexible ducts such as those made of textiles, non-metallic spiral ductwork or others, which are handled in EN 13180 or ductwork made from insulation duct board, which is handled in EN 13403. Requirements for the air tightness of the ventilation system for non-residential buildings are given in EN 16798-3. For residential buildings, it is essential to apply national rules. This document specifies methods to test rigid or semi-rigid non-metallic ductwork under laboratory conditions. On-site tests are excluded. The test methods and performance characteristics are valid for ventilation ducts with circular, rectangular or other cross sections.

This European Standard describes the methods to calculate the ventilation air flow rates for buildings to be used for energy calculations evaluation, heating and cooling loads. This European Standard applies to buildings with: - Mechanical ventilation systems (mechanical exhaust, mechanical supply or balanced system); - Passive duct ventilation systems for residential and low-rise non-residential buildings; - Combustion appliances; - Windows opening by manual operation; - Kitchens where cooking is for immediate use (including restaurants) This European Standard is applicable to hybrid systems combining mechanical and passive duct ventilation systems in residential and low-rise non-residential buildings. This European Standard applies to buildings smaller than 100 m and rooms where vertical air temperature difference is smaller than 15 K. The results provided by the standard are: If the air flow rates entering or leaving a ventilation zone; - the air flow rates required to be distributed by the mechanical ventilation system, if present. This European Standard is not applicable to: - Buildings with kitchens where cooking is not for immediate use - Buildings with automatic windows (or openings) - Buildings with industry process ventilation. The definition of ventilation and airtightness requirements (as indoor air quality, heating and cooling, safety, fire protection...) is not covered by this standard. The following information can be found in other standards and technical reports: - guidance to estimate pressure drops in ducts (CR 14378:2002)

Table 1 shows the relative position of this standard within the EN EPB package of standards.

This European Standard specifies the common methodology and the requirements for inspection of air conditioning systems in buildings for space cooling and/or heating and/or ventilation systems from an energy use standpoint. It can be used to fulfil the EPBD requirements (Energy Performance of Buildings Directive 2010/31/EU [9]) as well as in other contexts where such inspections are specified. The methodology specified in this standard deals with indoor climate problems that can be due to the systems inspected. This standard applies to both residential and non-residential buildings equipped with: - air conditioning system(s) without mechanical ventilation; or - air conditioning system(s) with mechanical ventilation; or - natural and mechanical ventilation system(s). This standard applies to: - fixed systems; - accessible parts that contribute to the cooling and mechanical ventilation services. This standard is also applicable to some systems for which the Directive does not require inspection, such as: - fixed systems of less than 12 kW output; - ventilation-only systems. The inspection of systems given in this standard is applicable to: - all types of comfort cooling and air conditioning systems. This includes air conditioning systems of an effective rated output of less than 12 kW not covered by Directive 2010/31/EU; - all types of ventilation systems that is to say mechanical, natural, hybrid (including mechanical and natural ventilation). Parts of this standard are also applicable to check ventilation requirements when there is no ventilation system. The inspection of systems includes but is not limited to the following components: - reverse-cycle operation of air-conditioning equipment; - associated water and air distribution and exhaust systems that form a necessary part of the system; - controls that are intended to regulate the use of associated water and air distribution and exhaust systems. Table 1 shows the relative position of this standard within the offset of EPB standards in the context of the modular structure as set out in EN ISO 52000 1:2017. NOTE 1 in CEN ISO/TR 52000 2:2017 [7] the same table can be found, with, for each module, the numbers of the relevant EPB standards and accompanying technical reports that are published or in preparation. NOTE 2 The modules represent EPB standards, although one EPB standard may cover more than one module and one module may be covered by more than one EPB standard, for instance a simplified and a detailed method respectively. See also Clause 2, Table A.1 and Table B.1. This standard is not applicable to: - qualification of the persons or organization in charge of inspections; - frequency of the mandatory inspection (defined at national level); - components supporting the heating function (specified in EN 15378-1:2017 [8] and the accompanying technical report CEN/TR 15378-2:2017 [8] covering the inspection of heating-only systems using boilers). The following information can be found in other standards or technical reports: - guidance regarding features affecting the frequency and duration of inspection are given in CEN/TC 16798-18:2017; - procedures and methods for the inspection of boilers and heating systems are given in preN 15378 (all parts) [8]. Table 1 shows the relative position of this standard within the set of EPB standards in the context of the modular structure as set out in EN ISO 52000 1:2017.
<table>
<thead>
<tr>
<th>Standard Code</th>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 16798-5-1:2017</td>
<td>CEN/TC 156 - Ventilation for buildings</td>
<td>Energy performance of buildings - Ventilation for buildings - Part 5-1: Calculation methods for energy requirements of ventilation and air conditioning systems (Modules M5-6, M5-8, M6-5, M6-8, M7-5, M7-8). Method 1: Distribution and generation. This European Standard covers the energy performance calculation of mechanical ventilation and air conditioning systems, including humidification and dehumidification. It takes into account the generation (air handling unit and distribution (duct system) parts. It includes a simplified calculation of adiabatic cooling systems. It does not cover the emission part (calculation of the required volume flow rates and/or supply air conditions), which is covered in EN 16798-7. It does not include the calculation of heating/cooling generation. This method is focused on large customized ventilation and air conditioning systems, typically used in commercial buildings, although the application is not restricted on the basis of building or space use type. A calculation method for ventilation systems with integrated heating/cooling generation, including domestic hot water generation, using a monthly or seasonal calculation interval or a bin method, is provided in a separate standard, EN 16798-5-2. This method does not include humidification and dehumidification or adiabatic cooling. Table 1 shows the relative position of this standard within the set of EPB standards in the context of the modular structure as set out in EN ISO 52000. 1. NOTE 1 CEN ISO/TR 52000 2 the same table can be found, with, for each module, the numbers of the relevant EPB standards and accompanying technical reports that are published or in preparation. NOTE 2 The modules represent EPB standards, although one EPB standard might cover more than one module and one module might be covered by more than one EPB standard, for instance a simplified and a detailed method respectively. See also Clause 2 and Tables A.1 and B.1.</td>
</tr>
<tr>
<td>EN 16798-3:2017</td>
<td>CEN/TC 156 - Ventilation for buildings</td>
<td>Energy performance of buildings - Ventilation for buildings - Part 3: For non-residential buildings - Performance requirements for ventilation and room-conditioning systems (Modules M5-1, M5-4)</td>
</tr>
<tr>
<td>EN 16798-5-2:2017</td>
<td>CEN/TC 156 - Ventilation for buildings</td>
<td>Energy performance of buildings - Ventilation for buildings - Part 5-2: Calculation methods for energy requirements of ventilation systems (Modules M5-6, M5-8, M6-5, M6-8, M7-5, M7-8) - Method 2: Distribution and generation</td>
</tr>
<tr>
<td>EN 16211:2015</td>
<td>CEN/TC 156 - Ventilation for buildings</td>
<td>Ventilation for buildings - Measurement of air flows on site - Methods</td>
</tr>
<tr>
<td>Standard</td>
<td>Organization</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>EN 15726:2011</td>
<td>CEN/TC 156 - Ventilation for buildings</td>
<td>Ventilation for buildings - Air terminal devices - Aerodynamic testing of damper and valves</td>
</tr>
<tr>
<td>EN 15239:2014</td>
<td>CEN/TC 156 - Ventilation for buildings</td>
<td>Ventilation for buildings - Test procedures and measurement methods to hand over air conditioning and ventilation systems</td>
</tr>
<tr>
<td>EN 15240:2011</td>
<td>CEN/TC 156 - Ventilation for buildings</td>
<td>Ventilation for buildings - Ductwork - Cleanliness of ventilation systems</td>
</tr>
<tr>
<td>EN 15726:2011</td>
<td>CEN/TC 156 - Ventilation for buildings</td>
<td>Ventilation for buildings - Air diffusion - Measurements in the occupied zone of air-conditioned/ventilated rooms to evaluate thermal and acoustic conditions</td>
</tr>
</tbody>
</table>

Disclaimer: TightVent has compiled this information with care. However, TightVent does not warrant that the information in this publication is free of errors. No responsibility or liability can be accepted for any claims arising through the use of the information contained within this publication. The reader assumes the entire risk of the use of any information in this publication.
EN 13141-7:2010
CEN/TC 156 - Ventilation for buildings
Ventilation for buildings - Performance testing of components/products for residential ventilation - Part 7: Performance testing of a mechanical supply and exhaust ventilation units (including heat recovery) for mechanical ventilation systems intended for single family dwellings
91.140.30 - Ventilation and air-conditioning
This part of EN 13141 specifies the laboratory test methods and test requirements for the testing of aerodynamic, thermal and acoustic performance, and the electrical performance characteristic of a mechanical supply and exhaust ventilation units used in a single dwelling. It covers unit that contain at least, within one or more cassettes: - supply and exhaust fans; - air filters; - air-to-air heat exchanger and/or Extract Air-to-Outdoor Air heat pump for extract air heat recovery; - control system. Such unit can be provided in more than one assembly, the separate assemblies of which are designed to be used together. The different possible arrangements of heat recovery heat exchangers and/or heat pumps are described in Annex A. This standard does not deal with non-ducted units or reciprocating heat exchangers. This standard does not deal with units that supply several dwellings. This standard does not cover ventilation systems that may also provide water space heating and hot water. This standard does not cover units including combustion engine driven compression heat pumps and absorption heat pumps. Electrical safety requirements are given in EN 60335-2-40 and EN 60335-2-80.

EN 15777:2010
CEN/TC 156 - Ventilation for buildings
Ventilation for buildings - Ductwork - Sheet metal
91.140.30 - Ventilation and air-conditioning
This European Standard applies to technical ductwork products, intended for installation in ductwork conforming to EN 1505 and EN 1506, used in air conditioning and ventilation systems defined in the scope of CEN/TC 156. This document specifies the leakage requirements for technical ductwork products, i.e. components in the ductwork that have more functions than conveying air, such as sound attenuators, filter boxes and duct fans, etc. The following products are not within the scope of this document: - ductwork components like bends, reducers and T-pieces. EN 12237 and EN 1507 apply; - flexible ducts according to EN 13180; - ducts made of insulation ductboards according to EN 13403; - dampers according to EN 1751; - air handling units according to EN 1886. This document is a parallel standard to EN 12237, EN 1507 and EN 1751, based on the same leakage classification.

EN 1507:2006
CEN/TC 156 - Ventilation for buildings
Ventilation for buildings - Sheet metal air ducts with rectangular section - Requirements for strength and leakage
91.140.30 - Ventilation and air-conditioning
The European Standard applies to rectangular ductwork of sheet metal used in air conditioning and ventilation systems defined in the principal scope of CEN/TC 156.

EN 12097:2006
CEN/TC 156 - Ventilation for buildings
Ventilation for buildings - Ductwork - Requirements for ductwork components to facilitate maintenance of ductwork systems
91.140.30 - Ventilation and air-conditioning
This European standard specifies requirements for dimension, shape and location for access panels for cleaning and service in ductwork systems, which conform to EN 1505, EN 1506 and EN 13180. National regulations shall always be followed, even when they deviate from requirements given in this standard.

EN 14239:2004
CEN/TC 156 - Ventilation for buildings
Ventilation for buildings - Ductwork - Measurement of ductwork surface area
91.140.30 - Ventilation and air-conditioning
To specify a method for the measurement and calculation of the surface area of ductwork and ductwork components.

EN 12237:2003
CEN/TC 156 - Ventilation for buildings
Ventilation for buildings - Ductwork - Strength and leakage of circular sheet metal ducts
91.140.30 - Ventilation and air-conditioning
This standard specifies requirements and test methods for strength and air leakage of circular ductwork used in air conditioning and ventilation systems in buildings. The standard is intended to establish the mechanical strength and leakage required to verify the fitness for the intended service as installed ductwork. The standard is primarily intended for in-situ measurements, but provisions are also made for its use in laboratory testing. The requirements and methods are applicable also to rectangular ductwork in respect of air leakage.

EN 13403:2003
CEN/TC 156 - Ventilation for buildings
Ventilation for buildings - Non-metallic ducts - Ductwork made from insulation ductboards
91.140.30 - Ventilation and air-conditioning
This European Standard specifies the basic requirements and characteristics for ductwork made of insulation ductboards and used in ventilation and air conditioning systems of buildings subject to human occupancy. This standard does not specify the fire reaction classification for different types of ductboards.

EN 13180:2001
CEN/TC 156 - Ventilation for buildings
Ventilation for buildings - Ductwork - Dimensions and mechanical requirements for flexible ducts
91.140.30 - Ventilation and air-conditioning
This standard specifies requirements and test methods for the technical characteristics of flexible ducts used in ventilation and air conditioning installations in buildings for human occupancy. This standard identifies the following parameters which shall be tested or inspected: - dimensions and tolerances; - mechanical resistance. Acoustic, thermal, reaction to fire, and pressure loss properties of flexible ducts are not covered in this standard.

ISO 17772-1:2017
ISO/TC 163 Thermal performance and energy use in the built environment
Energy performance of buildings – Indoor environmental parameters – Part 1: Indoor environmental input parameters for the design and assessment of energy performance of buildings
91.120.10 Thermal insulation of buildings
ISO 17772-1:2017 specifies requirements for indoor environmental parameters for thermal environment, indoor air quality, lighting and acoustics and specifies how to establish these parameters for building system design and energy performance calculations. It includes design criteria for the local thermal discomfort factors, draught, radiant temperature asymmetry, vertical air temperature differences and floor surface temperature. ISO 17772-1:2017 is applicable where the criteria for indoor environment are set by human occupancy and where the production or process does not have a major impact on indoor environment. It also specifies occupancy schedules to be used in standard energy calculations and how different categories of criteria for the indoor environment can be used. The criteria in ISO 17772-1:2017 can also be used in national calculation methods. ISO 17772-1:2017 sets criteria for the indoor environment based on existing standards and reports (listed in Clause 2 and the Bibliography). The document does not specify design methods, but gives input parameters to the design of building envelope, heating, cooling, ventilation and lighting.
EN ISO 9972:2015 - CEN/TC 89 - Thermal performance of buildings and building components

91.120.10 - Thermal insulation

ISO 9972:2015 is intended for the measurement of the air permeability of buildings or parts of buildings in the field. It specifies the use of mechanical pressurization or depressurization of a building or part of a building. It describes the measurement of the resulting air flow rates over a range of indoor-outdoor static pressure differences. ISO 9972:2015 is intended for the measurement of the air leakage of building envelopes of single-zone buildings. For the purpose of this International Standard, many multi-zone buildings can be treated as single-zone buildings by opening interior doors or by inducing equal pressures in adjacent zones. ISO 9972:2015 does not address evaluation of air permeability of individual components.

EN 12114:2000 - CEN/TC 89 - Thermal performance of buildings and building components

Thermal performance of buildings - Air permeability of building components and building elements - Laboratory test method

91.060.10 - Walls. Partitions. Façades

This Standard defines a general laboratory test method for determining the air permeability of building components or building elements, when subjected to positive or negative air pressure differences. It specifies the definitions, the test equipment and procedure, and provides directions for the interpretation of results. Annexes give indications on test conditions and a method for expressing results using a regression technique. This standard is not applicable to whole buildings or on site measurements.

EN 15651-1:2017 - CEN/TC 349 - Sealants for joints in building construction

Sealants for non-structural use in joints in buildings and pedestrian walkways

Part 1: Sealants for facade elements

91.100.50 - Binders. Sealing materials

This European Standard specifies definitions and requirements for non-structural facade sealants intended for sealing exterior wall joints, window and door perimeter joints in building construction, including the interior face. NOTE Provisions on assessment and verification of constancy of performance - AVCP (i.e. Product type determination and Factory Production Control) and marking of these products are given in EN 15651-5. This European Standard does not apply to non-structural sealants in any of non-paste form, to those used in interior walls and/or partitions and to oil-based mastics.

EN 15651-2:2017 - CEN/TC 349 - Sealants for joints in building construction

Sealants for non-structural use in joints in buildings and pedestrian walkways

Part 2: Sealants for glazing

91.100.50 - Binders. Sealing materials

This European Standard specifies definitions and requirements for non-structural elastic sealants used for sealing glazing in building construction applications. It covers glazing joints from 7° horizontal. Main areas of application are: - glass to glass; - glass to frame; - glass to porous substrates. Excluding aquariums, structural bonding/glazing, inner and outer seal to manufacture insulated glazing units, horizontal glazing (below 7°), organic glass (e.g. polycarbonate, PMMA, etc.).

EN 15651-3:2017 - CEN/TC 349 - Sealants for joints in building construction

Sealants for non-structural use in joints in buildings and pedestrian walkways

Part 3: Sealants for sanitary joints

91.100.50 - Binders. Sealing materials

This European Standard specifies definitions and requirements for sealants used for sealing of joints applied in sanitary areas in the interior of buildings exposed to non-pressurized water. It covers joints in: - bathrooms; - toilets; - showers; - domestic kitchens; - prefabricated elements in sanitary areas (e.g. shower cubicles). Industrial, drinking water, underwater (swimming pools, sewage systems, etc.), food contact applications and sealing of glass/ceramic countertop panels (stove tops, ceramic hobs) are excluded from the scope. This European Standard does not provide criteria or recommendations for the design of joints and installation of sealants in sanitary applications. NOTE Provisions on assessment and verification of constancy of performance - AVCP (i.e. Product type determination and Factory Production Control) and marking of these products are given in EN 15651-5. This European Standard does not apply to non-structural sealants in any of non-paste form, to those used in sanitary joints and to oil-based mastics.

EN ISO 8394-2:2017 - CEN/TC 349 - Sealants for joints in building construction

CEN/TC 349 - Sealants for joints in building construction

Buildings and civil engineering works

91.100.50 - Binders. Sealing materials

ISO 8394-2 specifies a method for determining the extrudability of sealants independently of the package in which they are supplied.

EN ISO 8394-1:2010 - CEN/TC 349 - Sealants for joints in building construction

91.100.50 - Binders. Sealing materials

ISO 8394-1:2010 specifies a method for determining the extrudability of a sealant. The method is for use in testing the extrudability of a sealant.

EN ISO 6927:2012 - CEN/SS B02 - Structures

CEN/SS B02 - Structures

Buildings and civil engineering works - Sealants - Vocabulary (ISO 6927:2012)

91.100.50 - Binders. Sealing materials

01.040.91 - Construction materials and building (Vocabularies)

ISO 6927:2012 defines technical terms for self-leveling and gun-grade (gunnable) sealants for above ground exposed structures. It is not applicable to sealants used in roads and airfields, sealants for water retaining structures, or structural glazing sealants.

EN ISO 10591:2005 - CEN/SS B02 - Structures

Building construction - Sealants - Determination of adhesion/cohesion properties of sealants after immersion in water (ISO 10591:2005)

91.100.50 - Binders. Sealing materials

ISO 10591:2005 specifies a method for the determination of the influence of water on the adhesion cohesion properties of sealants with predominantly plastic behaviour which are used in joints in building construction.

EN ISO 9046:2004 - CEN/SS B02 - Structures

Building construction - Joining products - Determination of adhesion/cohesion properties of sealants at constant temperature (ISO 9046:2002)

91.100.50 - Binders. Sealing materials

This International Standard specifies a method for the determination of the adhesion/cohesion properties of sealants with predominantly plastic behaviour which are used in joints in building construction.

EN ISO 7390:2003 - CEN/SS B02 - Structures

91.100.50 - Binders. Sealing materials

This International Standard specifies a method for the determination of the resistance to flow of sealants, by loss of cohesion under their own weight. These sealants are used in joints in vertical surfaces in building construction.

Disclaimer: TightVent has compiled this information with care. However, TightVent does not warrant that the information in this publication is free of errors. No responsibility or liability can be accepted for any claims arising through the use of the information contained within this publication. The reader assumes the entire risk of the use of any information in this publication.
<table>
<thead>
<tr>
<th>Standard Code</th>
<th>Standard Title</th>
<th>Description</th>
</tr>
</thead>
</table>

Polymeric materials

Applicable to test pieces cut from products of cellular materials. Useful for two purposes: a) studying the structure of cellular products in connection with their physical properties and their method of manufacture and b) ensuring product quality (quality assurance). Describes principle, apparatus, test piece and conditions, procedure and calculation and expression of the results. Three figures deliver the details for testing.