

Tight Vent

BUILDING AND DUCTWORK AIRTIGHTNESS PLATFORM

Home About TightVent Partners Publications Events FAQs Join & Contact

嵀 Hot news

Register now for the TightVent webinar on Ductwork Airtightness. Thursday 25 January 2018, 09:00-10:30 (CET)...more

Register now for the AIVC International workshop on ventilation and airtightness. 19-20 March 2018, Wellington, New Zealand...more

AIVC Workshop on Ventilation for Indoor Air Quality and Cooling. Friday 23 March 2018, Sydney, Australia...more

39th AIVC – 7th **TightVent** – 5th **venticool joint Conference in Juan-les-Pins, France**. The 7th **TightVent conference will be held on 18 and 19 September 2018** in Juan-les-Pins, France together with the 39th AIVC conference...more

Energy Efficiency and Indoor Climate in Buildings is out. This monthly online newspaper contains relevant information on TightVent Europe, AIVC, venticool & IEA EBC annex 62 and EU relevant information (from the BUILD UP platform). . Subscribe to get informed on a regular basis on the platforms'activities... more

Recent News

 TightVent welcomes SIGA as new partner

Q

- 23 March 2018, Workshop, Sydney (AU) – Ventilation for Indoor Air Quality and Cooling
- 25 January 2018, Webinar "Ductwork airtightness: Standardisation's on- going work and an overview of status and trends in Sweden, Japan, Spain and Portugal"
- TightVent newsletter issue #13 – November 2017 now available
- Feedback from the 38th AIVC & 6th TightVent conference: Summary of the airtightness track

Agenda for this webinar

- Ductwork Airtightness: Why Should We Care?
 - Valérie Leprince, PLEIAQ , France
- Status of Ductwork Airtightness in Japan and on-Going Work at ISO on Ductwork Airtightness
 - Masaki Tajima, KUT, Japan
- European Ductwork Airtightness Classes, on-Going Standardization Work and Status in Sweden
 - Lars-Åke Mattsson, CEN/TC 156/WG3, Sweden
- Market Trends in Spain and Portugal. An Industry Point of View
 - Rodrigo Sanz, Gonal Driving Air, Spain

Why should we care about ductwork airtightness ?

Webinar on ductwork airtightness January 25th, 2018 Valérie Leprince, PLEIAQ

Fan energy use, test on laboratory replication of real ductwork system

DUCTWORK LEAKAGE LEVELS

EVOLUTION IN REGULATORY OR PROGRAMME REQUIREMENTS

Evolution in regulatory or programme requirements

In Sweden ductwork airtightness is required Since 1966 Since 2007: Class C required In Portugal for large building Since 2006 ductwork leakage below 1.5 l/s.m² under 400 Pa In Belgium -Taken into account in calculation method, but no minimum requirement In UK bdas Test mandatory for system with design flows > 1 m³/s . For low pressure ducting no test required but taken into account in calculation \sim Test typically performed by ducting contractor In France • Since 2013 • Effinergie + label requires Class A Test has to be performed by a qualified independent technician effinergie

PRESENTATION OF SPEAKERS

Ductwork airtightness: standardisation's ongoing work and an overview of status and trends in Sweden, Japan, Spain and Portugal

Lars-Ake Mattsson

- CEN TC 156/WG3, Sweden
- European ductwork airtightness class, on-going standardization work and status in Sweden

Masaki Tajima

- KUT, Japan
- Status of ductwork airtightness in Japan and on-going work at ISO on ductwork airtightness

Rodrigo Sanz

- Gonal Driving Air, Spain
- Market trends in Spain and Portugal, an industry point of view

Siss accraces Mathematical Strates Siss accraces Mathematical Strates Siss accraces Siss accraces	SISS 8227209 <u>Suss 8227209</u> <u>Suss 8227209</u> <u>Suss 8227209</u> <u>Suss 8227209</u> <u>Suss 8227209</u> <u>Suss 8227209</u> <u>Suss 822828</u> <u>Suss 8228288</u> <u>Suss 822888888888888888888888888888888888</u>						lindab we simplify construction
Ventilationskanaler av stålplåt SVENSK STANDARD Sis 82 72 0g Oga 2 Hållfasthet och täthet Sta 2 Oga 2 Sta 2 2.3 Läckflöde Läckflödet (luftläckningen) g får vid av fabrikanten angiven täthetsklass A eller Ø - Inits överstiga 1 tabell 2 angivna virden i I/s och m ² mantelyta hos kanalen vid ett prottyck (övertyck) av 1 kPa 100	Ventilationskanaler av stålplåt SVENSK STANDARD SIS 82 72 09 Hållfasthet och täthet Gida 2 Gida 2 2.3 Läckflöde Läckflödet (luftläckningen) q får vid av fabrikanten angiven täthetsklass A eller B – inter överstiga i tabell 2 angivna värden i l/s och m ² mantelyta hos kanalen vid ett prottyck (övertryck) av 1 kPa 100 mm YP Tabell 2 Tabell 2 Täthetsklass Magina värden på läckflödet q överensatämmer med motsvarande värden i VVS-AMA 72.	SI	S 8272	0	9		
Hällfasthet och täthet Jäg 2 2.3 Läckflöde Läckflödet (luftläckningen) q får vid av fabrikanten angiven täthetsklass A eller 8 - inte överstiga i tabell 2 angivna värden i 1/s och m ² mantelyta hos kanalen vid ett prottyck (övertryck) av 1 kPa 100 P Tabell 2 Täthetsklass A Högsta tillätna läckflöde q 2.4 0.8 Angivna värden på läckflöde q överensstämmer med motsvarande värden i VVS-AMA 72.	Hällfasthet och täthet Vag 2 2.3 Läckflöde Läckflödet (luftläckningen) q får vid av fabrikanten angiven täthetsklass A eller 8 - inter överstiga i tabell 2 angivna värden i J/s och m ² mantelyta hos kanalen vid ett promyck (övertryck) av 1 kPa 100 VP Tabell 2 Täthetsklass A B i J/s och m ² vid 1 kPa. Angivna värden på läckflödet q överensstämmer med motsvarande värden i VVS-AMA 72.	Ventilationskanaler a	v stälplät			SVENSK STANDARD SIS 82 72 09 Utgåva 1	1972
Tabell 2 Täthetsklass A B Högsta tillätna läckflöde q 2,4 0,8 Angivna värden på läckflödet q överensstämmer med motsvarande värden i VVS-AMA 72.	Tabell 2 A B Täthetsklass A B Högsta tillåtna läckflöde q 2,4 0,8 Angivna värden på läckflödet q överensstämmer med motsvarande värden i VVS-AMA 72.	Hållfasthet och täthe 2.3 Läckflöde	t Läckflödet (luftläckningen) överstiga i tabell 2 angivna v (övertryck) av 1 kPa 700	q får värden	vid av fa i l/s och ^U P	orka 2 brikanten angiven täthetsklass A eller B_{-inte} m ² mantelyta hos kanalen vid ett provtryck	1915
Täthetsklass A B Högsta tillåtna läckflöde q 2,4 0,8 I I/s och m ² vid 1 kPa 2,4 0,8 Angivna värden på läckflödet q överensstämmer med motsvarande värden i VVS-AMA 72.	Täthetsklass A B Högsta tillätna läckflöde q il/s och m² vid 1 kPa 2,4 0,8 Angina värden på läckflödet q överensstämmer med motsvarande värden i VVS-AMA 72.		Tabell 2				
Högsta tillätna läcktlode <i>q</i> i <i>l/s</i> och m ² vid 1 kPa Angivna värden på läckflödet <i>q</i> överensstämmer med motsvarande värden i VVS-AMA 72.	Högsta tillätna lacktilode 9 i I/s och m² vid 1 kPa Angivna värden på läckfildet q överensstämmer med motsvarande värden i VVS-AMA 72.		Täthetsklass	A	В		
Angivna värden på täckflödet q överensstämmer med motsvarande värden i VVS-AMA 72.	Angivna värden på läckflödet <i>q</i> överensstämmer med motsvarande värden i VVS-AMA 72.						
			Högsta tillåtna läckflode q i l/s och m ² vid 1 kPa	2,4	0,8		

EN 16798-3 Performance requirements (New EPBD)

6.9.4 Leakages at air ducts

The classification and testing of airtightness of round ducts are defined in EN 12237, of rectangular ducts in EN 1507.

To reduce energy losses and to guarantee the planned air distribution, this value shall be minimum class B. Class C is recommended.

\bigcirc				lindab we simplify construct
Ē	EN 1	5780	Clean	liness
F.3Application of	cleanliness levels	s - airtightness		
The airtightness of the or suspended ceilings level. The minimum rexpressed as follows, c	ductwork is also impo can have a big influer recommended tightne corresponding with the	rtant for cleanliness. Leakag nee to the indoor air quality, ess class related to these technical recommendations	in unclean hollow spaces specially for the advanced leanliness levels can be EN 13779:2007, A.8.2,	
I	Table F.3 — Recomm Level	ended minimum tightness Recommended	ass Table A.1 Quali	Typical applications of cleanliness quality classe tv ITypical examples
		minimum tightness class	Class	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
	Basic	В	Low	rooms with only intermittent occupancy e.g. storage rooms, technical rooms
	Intermediate	С		offices, hotels, restaurants, schools,
	Advanced	U	Mediu	theatres, residential homes, shopping areas, exhibition buildings, sport buildings, general areas in hospitals and general working areas in industries
			High	Laboratories, treatment areas in hospitals high quality offices

Ø					lindab we simplify construction
	EN 12	2599	Handi	ng ov	/er
	Required Steps	Purpose	Activities	Annexes]
	<u>Step a</u> Completeness checks	To ensure that the ventilating and air conditioning system has been installed entirely in accordance with contract	1. Comparison of equipment with the installation list 2. Compliance with technical rules (contract and official) 3. Accessibility 4. Cleanliness 5. Balancing 6. Air tightness 7. Documents necessary for operating	Annex A With more specified information on the activities 1 to 7	
	— air tightness of ducts	according to EN 13779,			•

Ô	Airtightne Systems	ess Standa	ards	we simplify construction
		Dimensions	Strength and leal	kage
		EN 1506	EN12237	
		EN 1505	EN 1507	
		prEN 17192	prEN 17192	

lindab | we simplify construction

Airtightness Standards Components

Ø

Dampers	EN 1751
Technical Components	EN 15727
Flexible ducts	EN 13180

Airtightness Standards Air Handling Units								
Air Handling Units	EN 1886							
e 4 — Casing air leakage classe Leakage class of casing	es of air handling units, 40 Maximum leakag I × s ⁻¹ × 1	00 Pa negative test press pe rate (f ₄₀₀) Filter clas (EN 779) n ⁻²						
e 4 — Casing air leakage classe Leakage class of casing L3	es of air handling units, 40 Maximum leakag I × s ⁻¹ × 1 1,32	00 Pa negative test press le rate (f ₄₀₀) Filter clas (EN 779) G1 to F7						
e 4 — Casing air leakage classe Leakage class of casing L3 L2	es of air handling units, 40 Maximum leakag I × s ⁻¹ × 1 1,32 0,44	10 Pa negative test press le rate (f400) m ⁻² G1 to F7 F8 to F9						

lindab | we simplify construction

Circular metallic duct classification

Air tightness	Static pres	sure limit (p₅)	Air leakage limit (f _{max})		
class		Pa	m ³ ·s ⁻¹ m ⁻²		
	Positive	Negative			
А	500	500	$0,027 \cdot p_{t}^{0,65} \cdot 10^{-3}$		
В	1 000	750	$0,009 \cdot p_{t}^{0,65} \cdot 10^{-3}$		
С	2 000	750	$0,003 \cdot p_{1}^{0,65} \cdot 10^{-3}$		
Da	2 000	750	$0,001 \cdot p_1^{0,65} \cdot 10^{-3}$		

Table 2 – Ductwork Classification

Ø

Red	tangular r classifi	netallic cation	: du	ct		
	Table 1 — Du	ctwork classifica	tion			
Air tightness class	Air leakage limit (f _{max}) m⁵.s ^{.1} .m²	Static gau	ige press	ure limits	(ps) Pa	
		Negative at	Positiv	e at press	ure class	
		classes	1	2	3	
A	$0.027 \times p_{test} {}^{0.65} \times 10^{.3}$	200	400			
В	$0,009 \times p_{fest} \xrightarrow{0,65} \times 10^{-3}$	500	400	1 000	2 000	
С	$0,003 \times p_{test} = 0.65 \times 10^{-3}$	750	400	1 000	2 000	
Dª	0,001×p _{test} ^{0,65} ×10 ⁻³	750	400	1 000	2 000	
^a Ductwork	for special application.					

Thank you!

At Lindab, good thinking is a philosophy that guides us in everything we do. We have made it our mission to create a healthy indoor climate - and to simplify the construction of sustainable buildings. We do this by designing innovative products and solutions that are easy to use, as well as offering efficient availability and logistics. We are also working on ways to reduce our impact on our environment and climate. We do this by developing methods to produce our solutions using a minimum of energy and natural resources, and by reducing negative effects on the environment. We use steel in our products. It's one of few materials that can be recycled an infinite number of times without losing any of its properties. This means less carbon emissions in nature and less energy wasted.

We simplify construction

Lindah

± Load ± Sa	r calculating p	rimary er	nergy cons	umption in ho	ouse Ver 2.	3.1	aned 8	4288 MJ/y	ear 🔳	Calc Out
Commons	Envelope	Heating	Cooling	Ventilation	HEX	DHW	Solar	Lighting	PV	Cogeneration
Type of Ve	ntilation				\checkmark					
When vent	tilation syste saving technique or not, and its/thes	(s) O An	duct is in ny energy savi	istalled ng technique is n y saving techniq	ot adopted	macific f	20.00465			
Specific fun po	wer	0.30		W/(m ³ /h		specific fi	anpower			
		(the si	econd decima	al place)	·					

Design term

- Building Standard Law & Building Energy Efficiency Act
- by MLIT (Ministry of Land Infrastructure, Transport and Tourism)

Operation term

- Act on Maintenance of Sanitation in Buildings
- by MHLW (Ministry of Health Labour and Welfare)
 - Measurement of indoor air environment has to be executed every 2 months or more
 - Floor area of target building is greater or equal to $3,000m^2$

Ductworks Status ASTM, CEN and northern European countries have related regulations with the brief description on measurement procedures 	
2) Importancea) To indicate the leak positon of the ventilation systemb) To improve the airtightness of the building	
 3) Tasks to be settled a) Overviewing the status in terms of the codes and the regulations b) Practical measuring system, procedures, etc. should be shown 	7

