

On site ductwork airtightness measurements in standardization (Revision of EN 12599)

Dr.-Ing. Frank Bitter (WSPLab) Convenor of CEN/TC 156 WG8

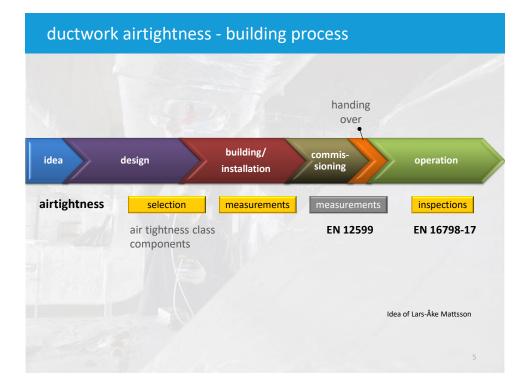
TightVent Europe Webinar

25. April 2019

Standard EN 12599

- EN 12599: Test procedures and measurement methods to hand over air conditioning and ventilation systems
 - first published in 2000
 - revised in 2012
 - applied to ventilation systems in non-residential buildings

Intention: Verify the fitness of purpose of ventilation systems


- Measurements intended to be executed by the installer
- Scope opened to other purposes in 2012 ("primarily for handing over")
- Ductwork leakage (airtightness) introduced in the standard in 2012

EN 12599 – overview on functional measurements

Measurement	at	Total System	Centra	al Syste	em/App	oliance	Duct work						
Parameters Type of Systems/Fund	ctions	Additional cleanliness test	Current drawn and power by the motor [D.6]	air flow *) [D.1]	air temperature *) [D.3]	pressure drop across filter [D.7]	ductwork leakage test [D.8]	supply air flow [D.1]	exhaust air flow [D.1]	supply air temperature **) and air temperature in the room [D.3]	air humidity [D.4]	sound pressure level [D.5]	Indoor air velocity [D.2]
Ventilation	(F) Z	2	1	1	0	1	2	1	2	0	0	2	0
System	(F) H	2	1	1	1	1	2	1	2	2	0	2	2
	(F) C	2	1	1	1	1	2	1	2	2	2	2	2
	(F) M/D	2	1	1	1	1	2	1	2	2	1	2	2
Partial air	(F) HC	2	1	1	1	1	2	1	2	1	2	2	2
conditioning system	(F) HM/HD/ CM/CD	2	1	1	1	1	2	1	2	1	1	2	2
	(F) MD	2	1	1	1	1	2	1	2	2	1	2	2
	(F) HCM/MC D/CHD/H MD	2	1	1	1	1	2	1	2	1	1	2	2
Air conditioning system	(F) HCMD	2	1	1	1	1	2	1	2	1	1	2	2

EN 12599 – airthightness measurements

- The airtightness class according to EN 1507 and EN 12237 shall be checked
- In large systems the airtightness can only be measured in a part of the system
- The measurements shall be performed while the duct is being installed and accessible
 - Additional tests can be necessary after installation in case of malfunction e.g. excess pressure
- Measurement procedure according to the product standards (laboratory testing)
 - Defined test pressure levels

Ductwork airtightness - System

 Airtightness classes for the system are defined in EN 16798-3

Classification	of st	vstem	air	tightness class
olassinoation	01 3	youchin	un	ugininess class

Air tightness class Old New		Air leakage limit (f _{max})	
		m ³ s ⁻¹ • m ⁻²	
	ATC 7	Not classified	
	ATC 6	0,067 5 x p _t ^{0,65} x 10 ⁻³	
А	ATC 5	0,027 x p _t ^{0,65} x 10 ⁻³	
В	ATC 4	0,009 x p _t ^{0,65} x 10 ⁻³	
С	ATC 3	0,003 x p _t ^{0,65} x 10 ⁻³	
D	ATC 2	0,001 x p _t ^{0,65} x 10 ⁻³	
	ATC 1	0,000 33 x p _t ^{0,65} x 10 ⁻³	

6

Ductwork airtightness - components vs. installed systems

EN 1507 / EN 12237

- Measure the airflow and static pressure
- Surface area at least 10 m²
- Variety of components and ducts (selection of the product range)
- Different diameters
- L/A ratio 1 1,5

EN 12599

- Measure the airflow and static pressure
- sufficiently large section (refers to EN 1507/12237)
- Variety of components and ducts determined by the installation ("representative selection")
- L/A ratio 1 1,5

Ductwork airtightness - components vs. installed systems

- Airtightness of the installed ductwork system is a result of the mounting (e.g. joints)
- System can contain different components
- Tightness class of the duct components is rarely reached

Revision on EN 12599

- EN 12599 is currently under revision
- Airtightness is a main subject to be worked on
 - Clarification between the airtightness classes of systems and duct components
 - Measurement method should be applicable also for inspections
 - Take into account requirements of national guidelines

Existing national guidelines for airtightness tests

 Existing guidelines in European countries will be introduced in the 3 following presentations

	Presenter	Guideline	Country
	Laurent Bonnière	FD 51-767	France
	Peter Rogers	DW 143	UK
1	Erik Osterlund	VVS & Kyl09	Sweden

OUTLINE

Olefficience

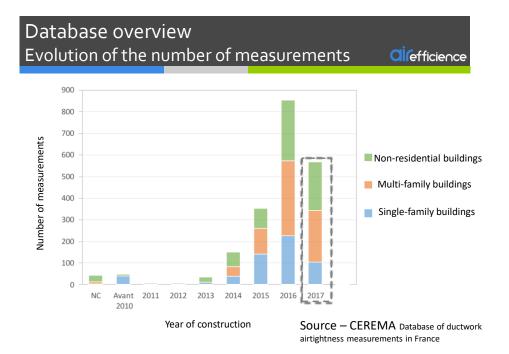
- DUCTWORK AIRTIGHTNESS IN FRENCH REGULATION
- LEAKAGES EXAMPLE OF A EP CALCULATION
- FD E51–767 DUCTWORK TIGHTNESS

MEASUREMENTS

Ductwork Airtightness in French Regulation

In new buildings, the ductwork class is an input data in the Energy Performance calculation (RT2012 : EP Regulation)

ightarrow No minimum requirement


ightarrow Impact on heating loads / cooling loads

If a better value than the default value is used in the EP calculation :

ightarrow a measurement is required to justify Class A, B or C

 \rightarrow this measurement has to be performed by a qualified idependant technician

Since 2013, Effinergie + label requires Class A

DUCTWORK LEAKAGES

EXAMPLE OF A EP CALCULATION

Ductwork leakages Example of a EP calculation

Olifefficience

Single family house

Ductwork leakages Example of a EP calculation

Clifefficience

Characteristics of the house

n .	· · · · · ·	0.0	Ep.	R		
Parois	Libelle	Systeme constructif du bati	(cm)	isolants m².K/W		
Plancher bas						
Sur Vide-Sanitaire	Plancher hourdis isolant	ITR – Polystyrène	-	Up = 0.27		
Plancher haut		·				
Rampant	Isolant sous toiture + doublage intérieur	ITR – Laine minérale (λ = 0.040) ITI – Laine minérale (λ = 0.032)	20 + 6	6.9		
Paroi verticale						
Mur extérieur	Doublage intérieur sur maçonnerie	ITI – laine minérale (λ = 0.032)	14	4.38		
Paroi vitrée						
	Cadre	Vitrage	Uw (W)	/m².K)		
Double vitrage - VR	PVC	4/16/4, PE Argon	1,5	5		
		Systèmes				
Chauffage						
Chaudière Gaz Condensation	Rdt : 97.8%	Puissance : 24 [kW]				
Eau Chaude Sanitaire						
	– Air extérieur – 250L					
	Eclairage Puissance d'éclairage moyenne = 8 [W/m²]					
Ventilation						
	Sur Vide-Sanitaire Plancher haut Rampant Paroi verticale Mur extérieur Paroi vitrée Double vitrage - VR Chauffage Chaudière Gaz Condensation Ballon thermodynamique Eclairage Ballon thermodynamique	Plancher bas Sur Vide-Sanitaire Plancher hourdis isolant Plancher haut Isolant sous toiture + doublage intérieur Paroi verticale Doublage intérieur Mur extérieur Doublage intérieur Paroi vitrée Cadre Double vitrage - VR PVC Chauffage Chaudifage Chaudifage Rdt : 97.8% Eau Chaude Sanitaire Ballon thermodynamique – Air extérieur – 250L	Plancher bas Sur Vide-Sanitaire Plancher hourdis isolant ITR – Polystyrène Plancher haut ITR – Dolystyrène ITR – Dolystyrène Plancher haut Isolant sous toiture + doublage intérieur ITR – Dolystyrène Paroi verticale Doublage intérieur ITR – Laine minérale (λ = 0.040) ITI – Laine minérale (λ = 0.032) Paroi vitrée Cadre Vitrage Double vitrage - VR PVC 4/16/4, PE Argon Chauffage Chaudière Gaz Condensation Rdt : 97.8% Puissance : 24 [kW] Ballon thermodynamique – Air extérieur – 250L Eclairage Eclairage	Parois Libellé Système constructif du bâti isolant (cm) Plancher bas - Sur Vide-Sanitaire Plancher hourdis Isolant ITR – Polystyrène - Plancher haut Isolant sous toiture + doublage intérieur ITR – Laine minérale (λ = 0.040) 20 + 6 Paroi verticale - - - Mur extérieur Doublage intérieur sur magonnerie ITI – Laine minérale (λ = 0.032) 20 + 6 Paroi verticale - - - - Mur extérieur Doublage intérieur sur magonnerie ITI – laine minérale (λ = 0.032) 14 Paroi vitrée - - - - Cadre Vitrage Uw (W, - 1, Double vitrage - VR PVC 4/15/4, PE Argon 1, Chaudière Gaz Rdt : 97.8% Puissance : 24 [kW] - Eau Chaude Sanitaire - - - Ballon thermodynamique – Air extérieur – 250U. - - -		

OCR

Ductwork leakages Example of a EP calculation

Ductwork airtightness is a input data in EP calculation

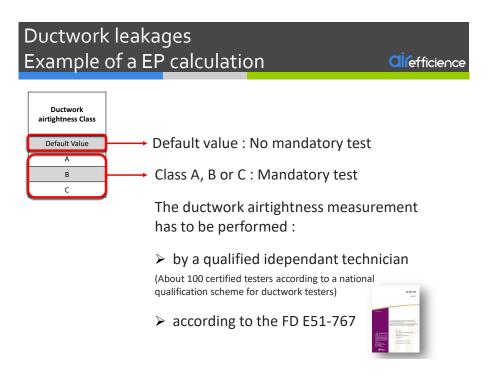
	Nom Cuisine - Bouche RT2012	
Ductwork airtightness class		Soufflage Extraction
	Réseau Classe d'étanchéité Résistance thermique hors volume chauffé Part des conduits dans le volume chauffé	Défaut Classe A Classe B Classe C Défaut
		OCR Source – OCR (http://ocr-

Source - OCR (http://ocr-expertise.fr)

Ductwork leakages Example of a EP calculation

Cliefficience

MVHR


- Nominal air Flow : 105 [m³/h] (max 180 [m³/h])
 Exchanger : 82% Heat Recovery Efficiency
- Supply Ductwork and Extract Ductwork : 25% inside conditioned space
 - 75% outside conditioned space

Ductwork airtightness	Heating	Energy saving			
Class	[kwhep/m²]	[kwhep/m²]	(%)		
Default Value	30,6	0	-		

Source - OCR (http://ocr-expertise.fr)

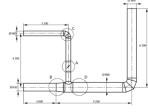
Ventilation for buildings – Ductwork tightness measurements

Oliefficience

FD E51-767 -> National guidance to specify how to use test standards :

- On site with various kind of ductwork (different materials, different shapes, ...)
- Different use of building (non residential building, residential building...)
- To take into account the usual operating pressure of the ventilation system
- > How to sample
- How to take into account specific devices (plenum box, flexible sleeve, ...)

FD E51-767 refers to :


- EN 12 237 : Ventilation for buildings Ductworks Strength and leakage of circular sheet metal ducts
- EN 1507 : Ventilation for buildings Sheet metal air ducts with rectangular section – Requirements for strength and leakage
- EN 13 403 : Ventilation for buildings Non-metallic ducts Ductwork made from insulation ductboards
- EN 12 599 : Ventilation for buildings Test procedures and measurement methods to hand over air conditionning and ventilation systems

FD E51-767

Measurement of ductwork surface area :

FD E51-767 refers to : EN 14 239 Ventilation for buildings — Ductwork — Measurement of ductwork surface area

Diamètre	Aire latérale du conduit ^{a)} par unité de longueur	Longueur	Aire latérale totale du conduit
mm	m²/m	m	m ²
800	2,51	6,5 + 5,2	2,51 × 11,7 = 29,4
630	1,98	3,0	1,98 × 3,0 = 5,9
400	1,26	4,2+3,3	1,26 × 7,5 = 9,5
otal pour l'installation rep	présentée sur la Figure 2		44,8

Only for individual system (in residential buildings) it's also possible to calculate the surface area with another method :

ightarrow 0,1 x Floor area of the dwelling

Clifefficience

Test pressure :

Type of ductwork :

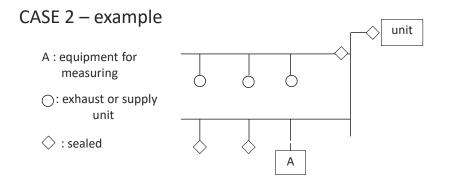
- > Supply air ducts : Positive pressure
- > Exhaust air ducts : Negative pressure

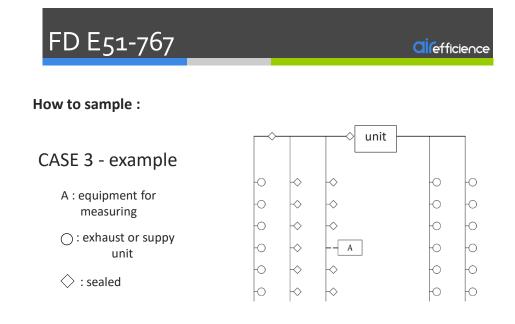
Use of building :

Building	Test pressure
Residential Building – Single family houses	± 80 Pa
Residential Building – Multi family building	± 160 Pa
Non Residential Building	± 250 Pa
Non Residential Building if P _{design} > test pressure +50Pa	P _{design}

Cliefficience

How to sample :


- Individual system (residential)
- 100 % of ductwork (Exhaust ductwork and Supply ductwork)


Collective system (residential) and non residential system

- All kinds of ducts (size, type of ducts, type of section, type of accessories, ...)
 AND
- One of those requirements shall be met :
 - **<u>Case 1 :</u>** L/Aj ≥ 1 and Aj > 10 m2 and Aj > 10 %
 - <u>Case 2 :</u> At least one whole floor to the ventilation unit and Aj > 10 m2 and Aj > 20%
 - <u>Case 3 :</u> At least one whole column to the ventilation unit and Aj > 10 m2 and Aj > 20%

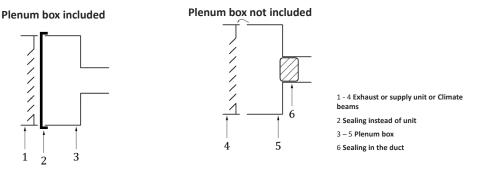
Clirefficience

How to sample :

How to sample :

If there are several ventilation units and air handling units Method of sample selection :

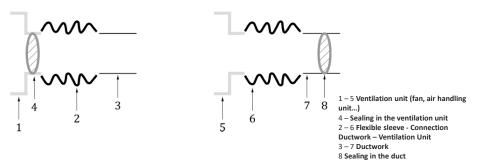
- > If $N \le 5$, each ductwork have to be tested
- If N > 5, number Of ductwork to be tested :


5 + 40% x (N-5)

N : number of unit

Measuring method – specific devices

- To Give penalties if some parts can't be tested to use it for the EP Calculation
- Method to seal off the diffuser (exhaust units / supply units) or the climate beams


Clirefficience

Measuring method – specific devices

Method to seal off the connection to the Ventilation unit

Flexible sleeve included

Flexible sleeve not included

FD E51-767

Measuring method – specific devices

Method to seal off – Specific devices – Correction of measured values

	Componant					
Flexible sleeve	Climat beam	Plenum box	Correction of measured values			
Included	Included	Included	x 1			
Not included	included	Included				
Included	Not included	Included	x 1,3			
Included	Included	Not included				
Not included	Not included	Included				
Included	Not included	Not included	x 1,4			
Not included	Included	Not included				
Not included	Not included	Not included	x 1,5			

Thank you for your attention

laurent.bonniere@air-efficience.fr www.air-efficience.fr

DW/143

Peter Rogers:

BESA Chairman of Ventilation Group Technical Committee.

Building Engineering Services Association Guide to Good Practice:

Sixth Edition 2013

GENERAL

- With regard to air leakage, the responsibilities for ensuring the achievement of a satisfactory project are divided between the ductwork contractor, production and the on-site installation team. It is essential that there is full co-operation between them.
- Establish with the system designer, client or representative the class of ductwork called for in the project specification.
- Leakage testing is always done under positive pressure even when the ductwork is to operate under negative pressure.

THE DUCTWORK CONTRACTOR

- Ensure that components have been manufactured and sealed in accordance with the design specification.
- Agree with the system designer the test pressure for each section of the installation
- Decide the best way to isolate the installation into test zones.
- Make sure that test points and blanking devices can be reached with minimum difficulty.
- Prepare test sheets giving the information required for each section being tested.

PRODUCTION

- Manufacture components with a good fit to minimize the use of sealant. A poor fit cannot be remedied by the use of additional sealant.
- Seal all longitudinal seams joints.
- Special care must be taken in the fitting of access doors and panels.
- Ductwork must be handled and delivered with care to avoid the danger of breaking the seals.

membership means more

ON SITE INSTALLATION TEAM

- Before installation, inspect all duct sections to make sure that factory applied seals have not been damaged during transit.
- Fix blanking plates or other temporary seal in the positions shown by the ductwork contractor.
- Agree with the client a progressive testing programme.
- Carry out a preliminary test and look for any obvious places where there may be leakage.
- Offer the test section to the client for formal acceptance and signature on the test sheet.

membership means more

CLASSIFICATION, AIR LEAKAGE AND TEST PROCEDURES

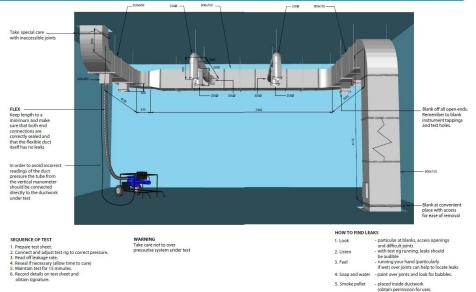
- Air leakage testing of low and medium pressure ductwork is not mandatory under BESA DW/144 specification for Sheet Metal Ductwork.
- Air leakage testing of high-pressure ductwork is mandatory under BESA DW/144 specification for sheet metal ductwork.

Duct pressure class	Static pre	ssure limit	Maximum air	Air leakage limits litres per second per square metre of duct surface area	
	Positive	Negative	velocity		
1	2	3	4	5	
	Pa	Pa	m/s		
Low pressure – Class A	500	500	10	0.027 x p ^{0.65}	
Medium pressure – Class B	1000	750	20	0.009 x p ^{0.65}	
High pressure - Class C	2000	750	40	0.003 x p ^{0.65}	
High pressure - Class D	2000	750	40	0.001 x p ^{0.65}	

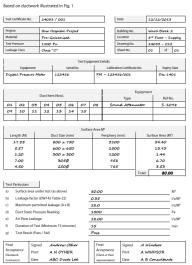
Table 1 Ductwork Classification and Air Leakage Limits (Reproduced from DW/144, Part One, Section 1.1)

Where p is the differential, pressure in pascals.

membership means more


AIR LEAKAGE TESTING PROCEDURE

- Determine the extent of ductwork to be tested and the method selected.
- Fit blanking devices in accordance with the system test zones.
- The section of ductwork area to be tested shall have an area large enough to enable the test rig to register a measurable leakage.
- Follow the recommendations of the manufacturer of the test equipment and ensure that it has a calibration certificate.
- Due notice of tests shall be given, so that arrangements for witnessing can be made.
- NOTE Testing shall be completed before any insulation or enclosure of the ductwork.


HINTS ON DUCTWORK LEAKAGE TESTING 2500 - 800x750 -4 Take special care _____ with inaccessible joints

membership means more

EXAMPLE OF COMPLETED TEST SHEET

SECTION 5 EXAMPLE OF A COMPLETED TEST SHEET

BUILDING REGULATIONS

• ADL2A (new buildings) and ADL2B (existing buildings) state that "Ductwork leakage testing should be carried out in accordance with the procedures set out in BESA DW/144" (refers to DW/143) Specification for Sheet Metal Ductwork.

membership means more

RANDOM TESTING

• If the system designer considers the testing of medium pressure class ductwork to be unavoidable then it is recommended that random tests are identified.

SYSTEM LEAKAGE LOSS

• It is generally accepted that in a typical good quality system the leakage from each class of ductwork under operating conditions will be in the region of:

Class A low pressure	6%
Class B medium pressure	3%
Class C high pressure	2%
Class D high pressure	0.5%

membership means more

TESTING OF PLANT ITEMS

- Items of in-line plant items will not normally be included in an air leakage test.
- The ductwork contractor may include such items in the test if the plant item has a manufacturers certificate of conformity for the pressure classification for the system under test.

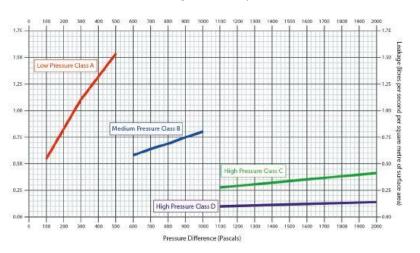
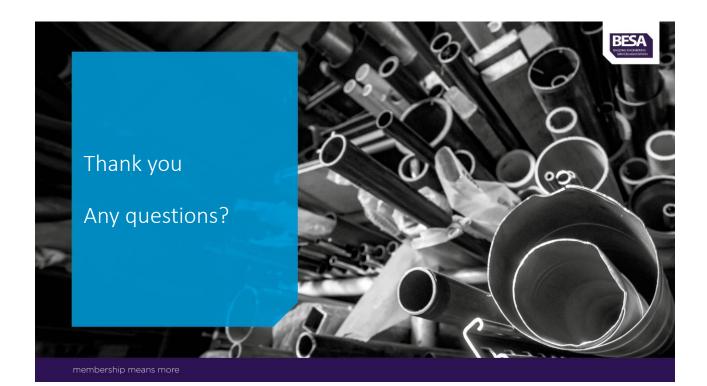
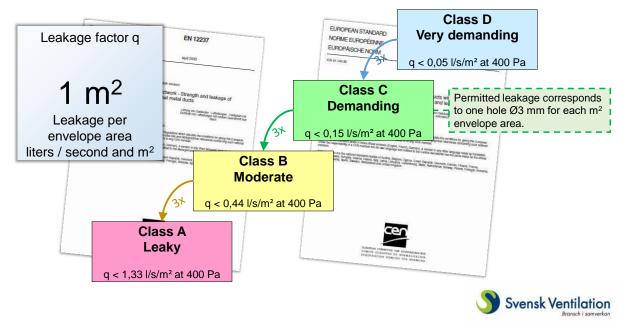

AIR LEAKAGE RATES

Table 22 Air leakage rates						
Note: Recommended 'mean' test pressures are highlighted in bold type with the actual selectio being left to the test operator.						
	Maximum leakage of duckwork					
	Static	Testing not mandatory Testing			nandatory	
	pressure	Low	Medium	High	High	
	differential	Class A	Class B	Class C	Class D	
	1	2	3	4	5	
	Pa	Litres per second per square metre of surface area				
				1	1	
	100	0.54				
	200	0.84				
	300	1.10				
	400	1.32				
	500	1.53				
	600		0.58			
	700		0.64			
	800		0.69			
	900		0.75			
	1000		0.80			
	1100			0.29	0.10	
	1200			0.30	0.10	
	1300			0.32	0.11	
	1400			0.33	0.11	
	1500			0.35	0.12	
	1600			0.36	0.12	
	1700			0.38	0.13	
	1800			0.39	0.13	
	1900			0.40	0.14	
	2000			0.42	0.14	

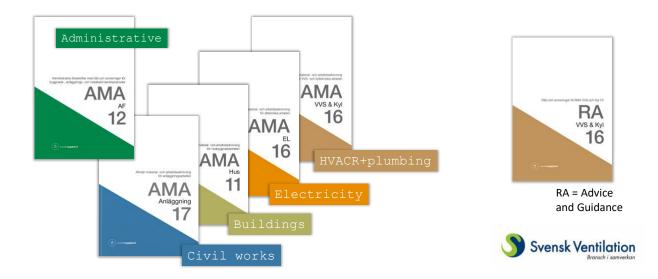
membership means more

PERMITTED LEAKAGE AT VARIOUS PRESSURES


Permitted leakage at various pressures


OTHER DUCTWORK-RELATED PUBLICATIONS

DW/143 A Practical Guide to Ductwork Leakage Testing DW/145 Guide to Good Practice for the Installation of Fire and Smoke Dampers DW/154 Specification for Plastic Ductwork DW/172 Specification for Kitchen Ventilation Systems DW/191 Guide to Good Practice: Glass Fibre Ductwork TR/19 Guide to Good Practice: Internal Cleanliness of Ventilation Systems(incorporating DW/TM2 and TR/17) BESA Working together Promoting understanding between mechanical services and ductwork contractors WWW.theBESA.com

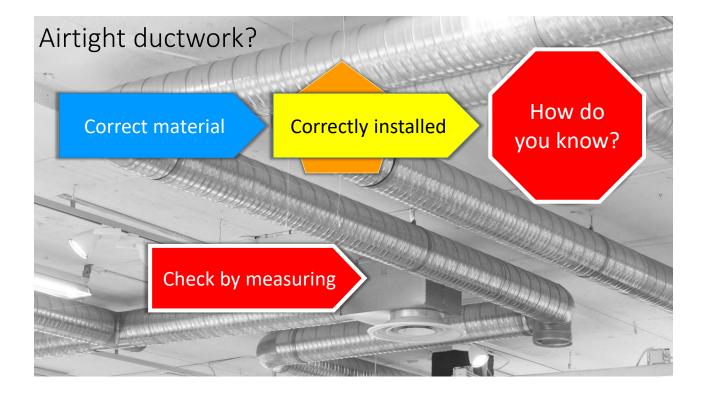


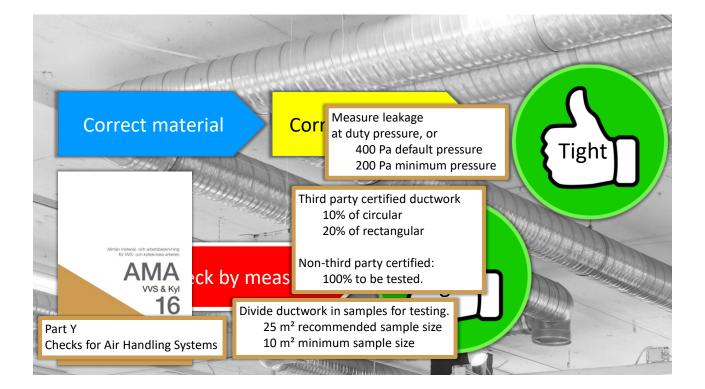
Ductwork Airtightness Standards

AMA = General Description of Materials and Works

Allmän Material- och Arbetsbeskrivning

AMA - legal status?




No law!

AMA is voluntary.

Invisible mistakes can ruin the airtightness class

